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Abstract—The goal of single-image deraining is to restore the rain-free background scenes of an image degraded by rain streaks and

rain accumulation. The early single-image deraining methods employ a cost function, where various priors are developed to represent

the properties of rain and background layers. Since 2017, single-image deraining methods step into a deep-learning era, and exploit

various types of networks, i.e., convolutional neural networks, recurrent neural networks, generative adversarial networks, etc.,

demonstrating impressive performance. Given the current rapid development, in this paper, we provide a comprehensive survey of

deraining methods over the last decade. We summarize the rain appearance models, and discuss two categories of deraining

approaches: model-based and data-driven approaches. For the former, we organize the literature based on their basic models and

priors. For the latter, we discuss the developed ideas related to architectures, constraints, loss functions, and training datasets. We

present milestones of single-image deraining methods, review a broad selection of previous works in different categories, and provide

insights on the historical development route from the model-based to data-driven methods. We also summarize performance

comparisons quantitatively and qualitatively. Beyond discussing the technicality of deraining methods, we also discuss the future

possible directions.

Index Terms—Rain streak removal, single image, model-based, data-driven

Ç

1 INTRODUCTION

RAIN introduces visual degradations to captured images
and videos. Rain streaks particularly in heavy rain can

cause severe occlusion on the background scene. Rain accu-
mulation [1], where distant rain streaks cannot be seen indi-
vidually and together with water particles form a layer of
veil on the background, significantly degrades the contrast
of the scene and reduce the visibility. Fig. 1 shows examples
of degradation due to rain streaks and rain accumulation.
Human vision and many computer vision algorithms suffer
from this degradation, since most of these algorithms
assume clear weather, with no interference of rain streaks
and rain accumulation. Hence, restoring images from rain,
called deraining or rain removal, is much desired in many
practical applications.

An early study of video deraining was started in 2004 by
Garg and Nayar [3]. They analyze rain dynamic appearan-
ces, and develop an approach to remove rain streaks from

videos. Kang et al. [4] was a pioneer in the single image
deraining by publishing a method in 2012. The method
extracts the high-frequency layer of a rain image, and
decomposes the layer further into rain and non-rain compo-
nents using dictionary learning and sparse coding. Starting
from 2017, by the publications of [1], [18], data-driven deep-
learning methods that learn features automatically become
dominant in the literature.

In this survey, we focus on single-image deraining, which
the aim is to estimate the rain-free background layer of an
image degraded by rain streaks and rain accumulation.
Unlike video deraining methods, which leverage temporal
redundancy and dynamics of rain, single image deraining
methods exploit the spatial information of neighboring pix-
els and the visual properties of rain and background scenes.

Themilestones of single-image deraining in the past years
are presented in Fig. 2. Before 2017, the typical methods are
model-based approach (or non-deep learning approach).
The major developments in the model-based approach are
driven by the following ideas: image decomposition (2012),
sparse coding (2015), and priors based Gaussian mixture
models (2016). Since 2017, single-image deraining methods
enter into a period of data-driven approach (or deep learning
approach). The major developments in the data-driven
approach are indicated by the following ideas: deep convolu-
tional network (2017), generative adversarial network (2019),
and semi/unsupervised methods (2019). In 2017-2019, there
are more than 30 deraining papers based on deep learning,
significantly more than the number of deraining papers
before 2017.

Model-based methods rely more on the statistical analy-
sis of rain streaks and background scenes. The methods
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enforce handcrafted priors on both rain and background
layers, then build a cost function and optimize it. The priors
are extracted from various ways: Luo et al. [5] learn dictio-
naries for both rain streak and background layers, Li
et al. [6] build Gaussian mixture models from clean images
to model background scenes, and from rain patches of the
input image to model rain streaks, Zhu et al. [7] enforce a
certain rain direction based on rain-dominated regions so
that the background textures can be differentiated from rain
streaks.

In recent years, the popularity of data-driven methods
has overtaken model-based methods. These methods
exploits deep networks to automatically extract hierarchical
features, enabling them to model more complicated map-
pings from rain images to clean ones. Some rain-related con-
straints are usually injected into the networks to learn more
effective features, such as rain masks [1], background fea-
tures [8], etc. Architecture wise, some methods utilize recur-
rent network [1], or recursive network [9] to remove rain

progressively. There are also a series of works focusing on
the hierarchical information of deep features, e.g., [10], [11].

While deep networks lead to a rapid progress in derain-
ing performance, many of these deep-learning deraining
methods train the networks in a fully supervised way. This
can cause a problem, since to obtain paired images of rain
and rain-free images is intractable. The simplest solution is
to utilize synthetic images. Yet, there are domain gaps
between synthetic rain and real rain images, which can
make the deraining performance not optimum. To over-
come the problem, unsupervised/semi-supervised methods
that exploit real rain images [12] and [13] are introduced.

Our paper aims to provide a comprehensive survey on
single-image deraining methods. We believe it can provide
a useful starting point to understand the main development
of the field, the limitations of existing methods, and the
future possible directions. The rest of the paper is organized
as follows. Section 2 introduces the rain appearance model.
Section 3 provides a detailed survey of single-image rain
removal methods, including their synthetic rain models,
deraining challenges, methods architectures, and the related
technical development. A particular emphasis is placed on
the deep-learning based methods as they offer the most sig-
nificant progress in the recent years. Subsequently, Section 4
gives detailed discussion on technical developments of net-
work architectures, basic blocks, and summaries of loss
functions and databases. Section 5 summarizes the quantita-
tive comparisons of a number of single-image rain removal
methods and shows qualitative comparisons. Finally, the
paper is concluded in Section 6.

2 RAINDROP APPEARANCE MODELS

The shape of a raindrop is usually approximated by a spheri-
cal shape [14]. As shown in Fig. 3, considering a point B on
the surface of the raindrop with a surface normal n̂, rays of

Fig. 1. Different types of visibility degradation caused by rain. (a)Rain
streaks cause severe occlusion on the background scene. (b)Rain accu-
mulation significantly degrades the contrast of the scene and reduce the
visibility.

Fig. 2. Milestones of single image deraining methods: image decomposition, sparse coding, Gaussian mixture models, deep convolutional network,
generative adversarial network, and semi/unsupervised learning. Before 2017, the typical methods are model-based approach (or non-deep learning
approach). Since 2017, single-image deraining methods enter into a period of data-driven approach (or deep learning approach).
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light (r̂, ŝ and p̂) are directed toward the observer via refrac-
tion, specular reflection, and internal reflection, respectively.
Hence, the radiance Lðn̂Þ at point B is approximated as the
sum of the radiance Lr of refracted ray, radiance Ls of specu-
larly reflected ray and radianceLp of internally reflected ray

Lðn̂Þ ¼ Lrðn̂Þ þ Lsðn̂Þ þ Lpðn̂Þ: (1)

Considering that the radiances depend on the environmen-
tal radiance Le in the direction of the reflected or refracted
ray, Eq. (1) can be expressed as

Lðn̂Þ ¼ RLeðr̂Þ þ SLeðŝÞ þ PLeðp̂Þ; (2)

where R, S and P denote the fractions of incident environ-
mental radiance that reaches the camera after refraction,
reflection and internal reflection, respectively. We refer to
these fractions ðR; S; P Þ as radiance transfer functions.

Moreover, we can reach the composite raindrop model
written as [14]

Lðn̂Þ ¼ 1� kði;mÞð Þ2Leðr̂Þ þ SLeðŝÞ þ PLeðp̂Þ; (3)

where i ¼ ðp� unþ aÞ is the incident angle, m is the refrac-
tive index of the water and k is the Fresnel’s reflectivity coef-
ficient for unpolarized light. Based on the statistics
from [14], the radiance of the raindrop is mainly decided by
the refraction, and the appearance of the raindrop is mainly
based on refraction through the drop.

For a moving raindrop, its appearance changes signifi-
cantly. The raindrop becomes a rain streak, and its appear-
ance relies on the brightness of the raindrop, background
scene radiances, and camera’s exposure time. The change of
pixel’s intensity value caused by a rain streak can be
approximated as [14]

DI ¼ �bIb þ a; (4)

with b ¼ t
T , and a ¼ tEr, where t is the time when a drop

remains within a pixel, and T is the exposure time. Er is the
time-averaged irradiance caused by the drop. Based on
Eq. (4), we can reach two conclusions: 1) A raindrop causes
an intensity change and moves faster than the integration
time of a typical video camera; 2) the intensity change of a
rain streak correlates linearly to the background intensity Ib.

Based on the derived numerical bounds [14], empirically
we obtain: 0 < b < 0:039 and 0 < t < 1:18. In most real
cases, a dominates the appearance of DI, thus

DI ¼ a: (5)

As a result, in most rain synthetic models, rain streaks are
assumed to be superimposed on the background image.

3 LITERATURE SURVEY

In this section, we first review a few rain synthesis models
proposed in some existing methods. Unlike in the previous
section (Section 2), the models we discuss here are only
loosely based on physics and thus, to our knowledge, their
correctness has not been verified both theoretically or exper-
imentally. Despite this, the methods that use these models
show, to some extent, the effectiveness of the models on
real-image deraining. Having discussed various rain syn-
thetic models, we briefly explain the challenges in image
deraining, and subsequently survey on existing deraining
methods comprehensively.

3.1 Synthetic Rain Models

Additive Composite Model. The most simple and popular rain
model used in existing studies is the additive composite
model [4], [6], which follows Eq. (5) and is expressed as

O ¼ Bþ S; (6)

where B denotes the background layer, and S is the rain
streak layer. O is the image degraded by rain streaks. Here,
the model assumes that the appearance of rain streaks is
simply superimposed to the background, and there is no
rain accumulation in the rain degraded image.

Screen Blend Model. Luo et al. [5] propose a non-linear
composite model, called screen-blend model

O ¼ 1� 1� Bð Þ � 1� Sð Þ ¼ Bþ S� B � S; (7)

where � denotes the operation of point-wise multiplication.
Unlike the additive composite model in Eq. (6), the back-
ground and rain layers influence the appearance of each
other. Luo et al. [5] claim that the screen blend model can
model some visual properties of real rain images, such as
the effect of internal reflections, and thus generate visually
more authentic rain images. The combination of rain and
background layers are signal-dependent. Implying, when
the background is dim, the rain layer will dominate the
appearance of the rain image; and, when the background is
bright, the background layer will dominate the image.

Heavy Rain Model. Yang et al. [1] propose a rain model
that includes both rain streaks and rain accumulation. This
is the first model in the deraining literature that includes
the two rain phenomena. Rain accumulation or rain veiling
effect is a result of water particles in the atmosphere and
distant rain-streaks that cannot be seen individually. The
visual effect of rain accumulation is similar to mist or fog,
which leads to low contrast. Considering two main aspects
of rain: the Koschmieder model to approximate the visual
appearance of a scene in a turbid medium, and overlapping
rain streaks that have different directions and shapes, a
novel rain model is introduced

Fig. 3. A raindrop’s appearance [14] is a complex mapping of the envi-
ronmental radiance, which is determined by reflection, refraction, and
internal reflection.
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O ¼ a � Bþ
Xs
t¼1

St

 !
þ ð1� aÞA; (8)

where St denotes the rain-streak layer that has the same
streak direction. t indexes the rain-streak layer and s is the
maximum number of the rain-streak layers. A is the global
atmospheric light, and a is the atmospheric transmission.

Rain Model With Occlusion. Liu et al. [15] extend the heavy
rain model to an occlusion-aware rain model for modeling
rain in video. The model separates rain streaks into two
types: transparent rain streaks that are added to the back-
ground layers, and opaque rain streaks that totally occlude
the background layers. The locations of these opaque rain
streaks are indicated by a map, called the reliance map. The
formulation of this rain model is expressed as

O ¼ b � Bþ
Xs
t¼1

St

 !
þ ð1� bÞ � R; (9)

whereR is the rain reliance map and b is defined as

bt i; jð Þ ¼ 1; if ði; jÞ 2 VS;
0; if ði; jÞ =2 VS;

�
(10)

where VS is defined as the rain occluded region.
Comprehensive Rain Model. Yang et al. [2] combine all

above mentioned degradation factors into a comprehensive
rain model for modeling rain appearance in video. It consid-
ers the temporal properties of rain scenes, particularly the
fast-changing rain accumulations that usually cause flicker.
This visible intensity changes along the temporal dimension
is called rain accumulation flow. Besides, it also considers
other factors including rain streaks, rain accumulation, and
rain occlusion, which are formulated as

O ¼ b � Bþ
Xs
t¼1

St

 !
þ ð1� aÞAþU

" #
þ ð1� bÞ � R;

(11)

where U is the rain accumulation flow.
Depth-Aware Rain Model.Hu et al. [16] further connect a to

the scene depth d, to create a depth-aware rain model

O ¼ b � 1�
Xs
t¼1

St � ð1� aÞA
 !

þ
Xs
t¼1

St þ aA; (12)

where St and a are connected with the scene depth written
as

Stði; jÞ ¼ SPatternði; jÞ � trði; jÞ;
trði; jÞ ¼ e

�amaxðdM;dði;jÞÞ
;

Aði; jÞ ¼ 1� e�bdði;jÞ;

(13)

where SPatternði; jÞ is an intensity image of uniformly-dis-
tributed rain streaks in the image space, and trði; jÞ is the
rain streak intensity map relying on the depth. dði; jÞ
denotes the depth and a controls the rain streak intensity. b
determines the thickness of fog, where a larger b denotes a
thicker fog.

Discussions. Following these different rain models, vari-
ous rain degradation can be synthetically rendered. A sum-
mary of rain synthetic models in the literature is provided
in Table 1.In general, heavy rain models [1], [13] and depth-
aware rain models [16] cover the most comprehensive rain
degradation for single rain image synthesis. However, as
we mentioned in the beginning of this section that all these
models are heuristic; implying that they might not entirely
correct physically. Nevertheless, as shown in the literature,
they can be effective, at least to some extent, for image
deraining.

3.2 Deraining Challenges

The goal of single image deraining is to recover the clean and
rain-free background scene from a rain degraded image.
However, there are a few challenges to accomplish the goal:

� Difficulties in modeling rain images In the real world,
rain can visually appear in many different ways.
Rain streaks can vary in terms of sizes, shapes,
scales, densities, directions, etc. Similarly, rain accu-
mulation depends on various water-particles and
atmospheric conditions. Moreover, rain appearance
significantly relies also on the textures and the depth
of the background scenes. All these cause difficulties
in modeling the appearance of rain, which conse-
quently cause the rendering of physically-correct
rain images to be a complex task.

� Ill-posedness of deraining problem Even with a simple
rain model that considers only rain-streaks, to esti-
mate the background scene from a degraded image
is an ill-posed problem. The reason is that we only
have the pixel intensity values produced by lights
carrying fused information of rain and background
scenes. To make the matter worse, in some cases the
background information can be totally occluded by
rain streaks or dense rain accumulation or both.

� Difficulties in finding proper priors As rain and back-
ground information might overlap in the feature

TABLE 1
Summary of Rain Synthetic Models in the Literature

Method Degradation Factors Main Features Publication

Additive Composite Model (ACM) Streak Simple and effective Li et al. 2016 [6]

Screen Blend Model (SBM) Streak Streaks and backgrounds are combined nonlinearly Luo et al. 2015 [5]

Heavy Rain Model (HRM) Streak, Accumulation Overlapping streaks generating accumulation Yang et al. 2017 [1]

Rain Model with Occlusion (ROM) Streak, Occlusion Considering rain occlusions Liu et al. 2018 [15]

Comprehensive Rain Removal (CRM) Streak, Occlusion, Accumulation, Flow Considering comprehensive visual degradation Yang et al. 2019 [2]

Depth-Aware Rain Model (DARM) Streak, Accumulation Streaks and accumlation modeling correlated with depth Hu et al. 2019 [16]
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space, it is non-trivial to separate them. Background
textures can be falsely deemed as rain, resulting in
incorrect deraining. Hence, strong priors for back-
ground textures and rain are necessary. However,
finding these priors is difficult, since background
textures are diverse, and some have similarity to the
appearance of rain-streaks or rain accumulation.

� Real paired ground-truthsMost of deep-learning meth-
ods rely on paired rain and clean background images
to train their networks. However, to obtain real rain
images and their exact pairs of clean background
images is intractable. Even for a static background,
lighting conditions always change. This difficulty
does not only impact on deep-learning methods, but
also for evaluating the effectiveness of any method.
Currently, for qualitative evaluation, all methods
rely on human subjective judgment on whether the
restored images are good; and for quantitative evalu-
ation, all current methods rely on synthetic images.
Unfortunately, up to now, there are significant gaps
between synthetic and real images.

In the following section, we will discuss how existing
deraining methods deal with these challenges.

3.3 Single-Image Deraining Methods

We categorize single-image deraining methods into two
basic approaches: model-based (non-deep-learning) and data-
driven (deep-learning) approaches. We will discuss the
existing methods of the two approaches in detail in the sub-
sequent sections. A summary of previous works is given in
Tables 2 and 3. In addition, for the sake of completeness, we
will also briefly discuss adherent raindrop removal meth-
ods, since adherent raindrops (i.e., water droplets attached
to a lens or windscreen) are also part of rain degradation;
although, in some situations, they can be avoided by placing
the camera under a shelter.

3.3.1 Model-Based Methods

Existing model-based methods employ optimization frame-
works for deraining, as shown in the top panel of Fig. 4.
These methods deal only with rain streaks and ignore the
presence of rain accumulation. A general optimization
framework can be expressed as

B̂ ¼ argminBkI� B� Sk22 þ� Bð Þ þC Sð Þ þV B;Sð Þ;
(14)

where � Bð Þ denotes the priors on the background layers,
C Sð Þ represents the priors on rain streak layers, and V B;Sð Þ
is the joint prior to describe the intrinsic relationship
between rain streaks and background layers. Different prior
terms are designed to better describe and separate the rain
streak from the background layers.

Sparse Coding Methods. Sparse coding [56] represents the
input vectors as a sparse linear combination of basis vectors.
The collection of these basis vectors is called dictionary,
which is used to reconstruct the certain type of signals, e.g.,
rain streaks and background signals in the deraining prob-
lem. Lin et al. [4] make the first attempt on single-image
deraining via image decomposition using a morphological

component analysis. The initially extracted high-frequency
component of a rain image is further decomposed into rain
and non-rain components by dictionary learning and sparse
coding. This pioneer work successfully removes sparse light
rain streaks. However, it significantly relies on the bilateral
filter preprocessing, and thus generates blurred background
details.

In a successive work, Luo et al. [5] enforce the sparsity of
rain, and introduce a mutual exclusivity property into a dis-
criminative sparse coding (DSC) to facilitate accurately the
separation of the rain/background layers from their non-
linear composite. Benefiting from the mutual exclusivity
property, the DSC preserves clean texture details; however,
it shows some residual rain streaks in the output, particu-
larly for large and dense rain streaks. Zhanget al. [60] con-
struct a model to learn a set of low-rank representation-
based and sparsity-based convolutional filters to efficiently
represent background rain-free images and rain streaks,
respectively. To further improve the modeling capacity,
Zhu et al. [7] construct an iterative layer separation process
to remove rain streaks from the background layer, as well
as to remove background’s texture details from the rain
streak layer using layer-specific priors. Quantitatively, the
method obtains comparable performance on some synthetic
datasets with that of deep learning-based methods pub-
lished in the same period of time, i.e., JORDER [1] and
DDN [18]. However, qualitatively on real images, the
method tends to fail in handling heavy rain cases, where
rain streaks may move in different directions.

To model rain streak directions and sparsity, Deng
et al. [17] formulate a directional group sparse model
(DGSM), which includes three sparse terms representing
the intrinsic directional and structural knowledge of rain
streaks. It can effectively remove blurred rain streaks but
fail to remove sharp rain streaks.

Gaussian Mixture Model. Li et al. [6] apply Gaussian mix-
ture models (GMMs) to model both rain and background
layers. The GMMs of the background layer is obtained off-
line from real images with diverse background scenes. A
selected rain patch from the input image that has no back-
ground textures is proposed to train the GMMs of the rain
layer. The total variation is utilized to remove small sparkle
rains. The method is capable to effectively remove rain
streaks of small and moderate scales, but fail to handle large
and sharp rain streaks.

3.3.2 Deep Learning Based Methods

Deep CNNs. The era of deep-learning deraining starts in year
2017. Yang et al. [1] construct a joint rain detection and
removal network. It can handle heavy rain, overlapping rain
streaks, and rain accumulation. The network can detect rain
locations by predicting the binary rain mask, and take a
recurrent framework to remove rain streaks and clear up
rain accumulation progressively. The method achieves good
results in heavy rain cases. However, it might falsely remove
vertical textures and generate underexposed illumination.

In the same year, Fu et al. [18], [19] made an attempt to
remove rain streaks via a deep detail network (DetailNet).
The network takes only the high frequency details as input,
and predicts the residue of the rain and clean images. The
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TABLE 2
An Overview of Single-Image Rain Removal Methods (Part1)
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TABLE 3
An Overview of Single-Image Rain Removal Methods (Part2)

Method Category Rain

Model

Variables or Priors Key Idea Publication

LP GMM ACM Gaussian mixture model;

Total variation.

Two patch-based priors for the background and rain

layers are built based on Gaussian mixture models and

can accommodate multiple orientations and scales of rain

streaks.

Li et al. 2016 [6]

Semi-supervised

CNN

Semi/Un-

Supervised

ACM Rain streak; Residual. A semi-supervised learningmethod formulates the residual

as a specific parametrized rain streak distribution between

an input rainy image and its expected network output.

Wei et al. 2019 [25]

UD-GAN ACM Rain streak; Residual. An Unsupervised Deraining Generative Adversarial

Network is built to introduce self-supervised constraints,

the intrinsic priors extracted from unpaired rainy and

clean images.

Jin et al. 2019 [12]

Benchmark Benchmark +

Application

ACM +

Raindrop

– It provides extensive study and evaluation of existing

single image deraining algorithms with a new proposed

large-scale dataset including both synthetic and real-

world rainy images of various rain types.

Li et al. 2019 [26]

RobustFlow HRM Residual channel; Rain

accumulation; Total variation.

The accuracy of the optical flow estimation under rainy

conditions is improved via residual channel and

optimization with layer-wise priors.

Li et al. 2018 [63]

RainFlow HRM Veiling-invariant features;

Streak-invariant feature.

A deep learning pipeline is built to extract veiling-invariant

features and establish a newmapping operation to remove

the effect of rain-streak patterns at the feature level.

Li et al. 2019 [64]

PhysicsRender HRM Photometry of rain streak; Rain

streak

composition; Rainfall composition.

A physical-based rain rendering pipeline is built to

synthesize rain scenes to evaluate the performance of

deep object detection and semantic segmentation

algorithms in degraded rainy and haze weather.

Halder et al.

2019 [65]

Fig. 4. The improvement of single-image rain removal, from model-based to data-driven approaches. The model-based methods employ optimization
frameworks for deraining. They rely on the statistical analysis of rain streaks and background scenes, and enforce handcrafted priors on both rain
and background layers. Data-driven approaches exploit deep networks to automatically extract hierarchical features, enabling them to model more
complicated mappings from rain images to clean ones. Some rain-related constraints are injected into the networks to learn more effective features.
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paper shows that removing the background information in
the network input is beneficial, as doing so makes the train-
ing easier and more stable. However, the method still can-
not handle large and sharp rain streaks.

Following Yang et al. [1] and Fu et al. [18], [19], many
CNN based methods [8], [10], [20], [21], [22], [23] are pro-
posed. These methods employ more advanced network
architectures and injecting new rain related priors. They
achieve better results both quantitatively and qualitatively.
However, due to the limitation of their fully supervised
learning paradigm, namely using synthetic rain images,
they tend to fail when dealing with some conditions of real
rain that has never been seen during training.

Generative Adversarial Networks. To capture some visual
properties of rain that cannot be modeled and synthesized,
the adversarial learning is introduced to reduce the domain
gaps between the generated results and real clean images.
The typical network architecture consists of two parts: gen-
erator and discriminator, where the discriminator attempts
to assess whether a generated result is real or fake, which
provides an additional feedback to regularize the generator
to produce more visually pleasing results. Zhang et al. [24]
directly apply the conditional generative adversarial net-
work (CGAN) for the single image rain removal task, as
shown in Fig. 5a. CGAN is capable of capturing the visual
properties beyond the signal fidelity, and presents results
with better illumination, color and contrast distribution.
However, CGAN sometimes might generate visual artifacts
when the background of the testing rain image is different
from those in the training set.

Li et al. [13] propose a single-image derainingmethod that
combines the physics-driven network and adversarial learn-
ing refinement network, as shown in Fig. 5c. The first stage
learns from the synthesized data and estimates physics-
related components, i.e., rain streaks, the transmission, and
the atmospheric light. At the second refinement stage, a
depth-guided GAN is proposed to compensate for the lost
details and to suppress the introduced artifacts at the first
stage. Learning from real rain data, some visual properties of
the results by these methods are significantly improved,

namely removing rain accumulation more thoroughly and
achieving a more balanced luminance distribution. How-
ever, as GAN-based methods are not good at capturing fine-
grained detail signals, the diversified appearances of real
rain streaks are also not properlymodeled in thesemethods.

Semi/Unsupervised Learning Methods. Recently, semi-super-
vised and unsupervised learning methods make an attempt
to improve the generality and scalability by learning directly
from real rain data. Wei et al. [25] propose a semi-supervised
learningmethod tomake use of the priors in both synthesized
paired data and unpaired real data, as shown in Fig. 6a. In the
proposed method, the residual is formulated as a specific
parametrized rain streak distribution between an input rain
image and its expected network output. The model trained
on synthesized paired rain images is adapted to handle diver-
sified rain in real scenarios with the guidance of the rain-
streak distribution model. The method, however, does not
show effective deraining results particularly for real rain
images. This might be caused by the loose loss functions they
impose to the network during the training process.

In [12], an unsupervised deraining generative adversarial
network (UD-GAN) is proposed by introducing self-super-
vised constraints, and the intrinsic priors extracted from
unpaired rain and clean images, as shown in Fig. 6b. Two
collaborative modules are designed: One module is utilized
to detect the difference between real rain images (real back-
ground images) and generated rain images (generated back-
ground images); while the other is introduced to adjust the
luminance of the generated results, making the results more
visually pleasing. The method is capable of removing real

Fig. 5. Summary of GAN-based rain removal methods. To capture some
visual properties of rain that cannot be modeled and synthesized, the
adversarial learning is introduced to reduce the domain gaps between
the generated results and real clean images.

Fig. 6. Summary of semi/unsupervised learning-based rain removal
methods. Semi/un-supervised learning methods make an attempt to
improve the generality and scalability by learning directly from real rain
data.
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rain from rain images, yet inevitably losing some details,
particularly when the rain streaks are dense.

Benchmark and Applications. Li et al. [26] provided exten-
sive study and evaluation of existing single image deraining
algorithms with a newly proposed large-scale dataset
including both synthetic and real-world rain images with
various rain types, i.e., rain streak, raindrops, and mist. The
benchmark also includes a wide range of evaluation criteria
including the results of different methods quantitatively
and qualitatively. Comparatively, beyond extensive evalua-
tions, our survey focuses more on discussions on technical
developments of existing rain models, deraining methods
from various perspectives.

There are also recent works focusing on rain-related appli-
cations, e.g., optical flow estimation in rainy conditions or
object detection in rain videos. In [63], the accuracy of the opti-
cal flow estimation under rainy conditions is improved via
residual channel and optimization with layer-wise priors.
In [64], a deep learning pipeline is built to extract veiling-
invariant features and establish a new mapping operation to
remove the effect of rain-streak patterns at the feature level.
In [65], a physics-based rain rendering pipeline is built to syn-
thesize rain scenes to evaluate the performance of deep object
detection and semantic segmentation algorithms in degraded
rainy and hazy scenes.

3.3.3 Adherent Raindrop and Snow Removal

Raindrops adhered to the camera lens can severely degrade
visibility of a background scene in an image. The goal of
adherent raindrop removal is to detect and remove rain-
drops from an input image. Deraining is different from
adherent raindrop removal, since rain images do not always
suffer from adherent raindrop degradation, and vice versa:
Adherent raindrop images do not always suffer from the
degradation of rain streaks or rain accumulation. Neverthe-
less, we discuss it briefly here for the sake of the complete-
ness of the survey.

In [57], Yamashita et al. develop a stereo system to detect
and remove raindrops. Subsequently, a method [58] is built
based on the image sequence instead of stereo video. You
et al. [59] propose a motion based method to detect rain-
drops, and apply video completion to remove the detected
regions. Eigen et al. [27] make the first attempt to tackle the
problem of single-image raindrop removal. A three-layer
CNN is trained with pairs of raindrop degraded images and
the corresponding clean ones. It can handle relatively sparse
and small raindrops as well as dirt, however, it fails to pro-
duce clean results for large and dense raindrops.

Recently, Qian et al. [28] develop an attentive
GAN (AttGAN) [28] by injecting visual attention into both the
generative and discriminative networks, as shown in Fig. 5b.
The visual attention does not only guide the discriminative
network to focus more on local consistency of the restored
raindrop regions, but also make the generative network pay
more attention to the contextual information surrounding the
raindrop areas. Quanet al. [62] introduce a double attention
mechanism into deepCNNmodels. The double attention con-
currently guides the CNN with shape-driven attention and
channel recalibration. For the shape-driven attention, the
physical shape priors of raindrops, i.e., convexness and con-
tour closedness, help locate raindrops;while the channel recal-
ibration improves the robustness of processing raindropswith
varying appearances.

Similarly, snow can be regarded as small particles float-
ing in the air, whose appearance depends on their particle
sizes and shapes, as well as their distance to the camera.
In [32], snow removal is also conducted via the same frame-
work as rain removal. DesnowNet [61] makes the first
efforts in the data-driven way. In this work, a multi-stage
network is proposed to deal with the removal of translucent
and opaque snow particles. The snow attributes of translu-
cency and chromatic aberration are estimated. Furthermore,
the residual complements of the snow-free images is esti-
mated to restore details obscured by opaque snow.

4 TECHNICAL DEVELOPMENT REVIEW

In this section, we summarize the developments of existing
deep-learning methods from the perspective of the network
architectures, basic blocks, loss functions, and datasets. These
aspects significantly influence the network’s learning capacity
and thus determine the networks’ deraining performance.

4.1 Network Architectures

Since the publications of deep learning based deraining [1],
[19], the successive methods aim to design more effective
network architectures by relying on certain assumptions/
constraints and general knowledge in image processing. In
this section, we take a look at these developments.

Deraining Assumptions/Constraints. Specific networks ded-
icated to certain problems usually perform better than
generic networks. To create these specific networks, some
constraints or assumptions about the problems need to be
injected. For deraining, these assumptions can relate to rain,
background scenes, or other information. By incorporating
some of these assumptions, a network is expected to learn

Fig. 7. Summary of the side information and priors for single-image rain removal. They injected into the networks to learn more effective features for
deraining.
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the characteristics of rain better, and thus to separate rain
layer from the background layer more robustly.

Fu et al. [19] assume a rain image can be decomposed into
detail and base layers, where the detail layer contains the
image textures and rain streaks (Fig. 7a), and the base layer
mostly contains the background and the rain accumulation.
The proposed network thus attempts to derain the the detail
layer, before fusing the layer with the base layer to obtain
the rain-free output.

Yang et al. [1] construct a joint rain detection and removal
network as shown in Fig. 7b to detect rain locations, esti-
mate rain densities and predict rain sequentially, which
boosts the capacity of the network to process rain and non-
rain regions differently. Li et al. [20] focus on the scale diver-
sity of rain streaks. A scale-aware network as shown in
Fig. 7c consisting of parallel subnetworks is built to make it
aware of different scales of rain streaks, producing better
deraining performance for real images. Zhang et al. [22] pro-
pose a density-aware rain removal method (DID-MDN) as
shown in Fig. 7d to automatically detect the rain-density as
the guidance information for the successive deraining.

Aside from assumptions related to rain, some assumptions
ar related to the background scenes. Hu et al. [16] analyze the
complex visual effects in real rain and formulate a rain imag-
ing model related to the scene depth. An end-to-end deep
neural network as shown in Fig. 7e is developed to extract
depth-attentional features and to regress a residual map for
predicting the clean image. In [23], a dual CNN as shown in
Fig. 7f is presented, where two branches learn the estimation
of two parts of the target signal: structures and details.

Another type of constraints is the confidence information
of the residual between the estimated background layer and
the ground-truth. In Fig. 7g, the model [29] learns about
rain streaks by being guided by a per-pixel confidence map.
This map is used to weigh wrongly estimated pixels in the
back-propagation process, so that the network can pay
more attention to these pixels during the training process. A
summary of deraining side information used in previous
works in provided in Table 4.

Image Processing Knowledge. Some ideas present in the
image processing literature can also useful in designing
deraining network architectures, for instance: multi-scale
structure, Laplacian pyramid, wavelet transform, etc. A
scale-free network [30] as shown in Fig. 8a pays attention to
the scale variety of rain streaks in real scenes, and constructs
a scale-free deraining architecture by unrolling a wavelet
transform into a recurrent neural network, which can han-
dle various kinds of rain at different scales. Guided by the
hierarchical representation of the wavelet transform, a
recurrent network consisting of two stages is built: 1) rain
removal on the low-frequency component; 2) recurrent
detail recovery on high-frequency components gudied by
the recovered low-frequency component.

PyramidDerain [11] pursues a light-weighted pyramid of
network as shown in Fig. 8b to remove rain from a single
image. The decomposed Gaussian Laplacian image pyra-
mid is combined with a deep network. The learning para-
digm at each pyramid layer can be simplified, and the
obtained network becomes shallow and has less parameters.
The model is quite light-weighed and achieves comparable
state-of-the-art performance.

Li et al. [31] propose a recurrent network to remove rain
streaks progressively as shown in Fig. 8c. The intermediate
result from the last recurrence is taken as the input of the
next recurrence, and the features are also forwarded and
fused by RNN units, e.g., GRU and LSTM, across recur-
rences. Ren et al. [9] utilize recursive computation to obtain
more effective processing as shown in Fig. 8d. The PReNet
performs stage-wise operations that process the input and
intermediate results to generate the clean output images
progressively.

TABLE 4
Summary of Side Information Used in Previous Works

Side information Methods

Rain Mask JORDER [1]
Rain Density JORDER [1], DID-MDN [22]
Depth DAF-Net [16], HeavyRainRestorer [13]
Attention DAF-Net [16], SPA-Net [34], AttGAN [28]
Intermediate Results JORDER-E [33], PReNet [9],
Bands Results Scale-Free Rain Removal [30], PyramidNet [11]

Fig. 8. Summary of the network improvement for single-image deraining. More effective network architectures are designed by relying on certain
assumptions/constraints and general knowledge in image processing.
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4.2 Basic Blocks

With the development of deep-learning based methods, the
trend of newly proposed methods is to have more complex
basic blocks with more powerful modeling capacities, which
are further stacked into amore complex deraining network.

Using Existing Architectures. DetailNet [18], [19] (Figs. 9a
and 9b) introduces a residual network and a cascaded CNN
for rain removal. AttGAN [28] (Fig. 9d) utilizes U-Net as the
baseline of the generator, which is effective to fuse the infor-
mation from different scales to obtain global information
while maintaining local details. RESCAN [31] (Fig. 9h)
introduces channel-wise attention to adjust the relative
weighting among channels for better separating rain streaks
from background layers.

Multi-stream dense network [22] (Fig. 9g) combines dense
block and convolutional networks. Residual dense net-
work [30] (Fig. 9i) integrates dense blocks into residual net-
works. In [8] (Figs. 9k and 9e), basic blocks are connected in
the recursive way, where the input feature is also forwarded
to the intermediate features of the network. In [9] (Fig. 9f),
residual blocks are also aggregated in the recursive way and
the LSTMs are selected to connect different recurrences.

Multi-Path Architectures.One of the common architectures
is the multi-path network. As shown in Figs. 9c, 9g and 9l,
the networks have different paths possessing different prop-
erties, i.e., kernel sizes, dilation factors, and filter directions,
to gather different kinds of information. In Figs. 9c and 9e,

different paths have different receptive fields, and thus can
obtain both global information and maintain local structural
details. In Fig. 9l, the spatial redundancies are aggregated
fromdifferent directions to form visual attention.

Recursive Architectures. In [8], [9], [11], [31], recursive
blocks are nested and aggregated in the recursive way as
shown in Figs. 9f, 9k, 9e and 9i. The networks perform stage-
wise operations that process the input and intermediate
results to generate the output clean images progressively.
Inter-stage recursive computation of different blocks is some-
times adopted to propagate information across the blocks.

Non-locally enhanced encoder-decoder network [10] as
shown in Fig. 9j incorporates nonlocal operations to the
design of an end-to-end network for deraining. The non-local
operation calculates the feature at a spatial position as a
weighted sum of the features at a specific range of positions.
In [34], a spatial attentivemodule as shown in Fig. 9l employs
recurrent neural networks with ReLU and identity matrix
initialization, to accumulate global contextual information in
four directions. It utilizes another branch to capture the spa-
tial contexts to selectively highlight the transformed rain
features.

4.3 Loss Functions

In existing deraining methods, several loss functions have
been proposed to regularize the training of the deraining
network.

Fig. 9. The basic block improvement for single-image rain removal. The trend of newly proposed methods is to have more complex basic blocks with
more powerful modeling capacities, which are further stacked into a more complex deraining network.
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Fidelity-Driven Metrics. Most studies need to use signal
fidelity-driven matrices as the loss functions, such as Mean
Squared Error (MSE) (L2), mean squared error (MAE) (L1),
and SSIM [41]. They are defined as follows:

LMSE x; x̂ð Þ ¼ kx� x̂k22; (15)

LMAE x; x̂ð Þ ¼ kx� x̂k; (16)

LSSIM x; x̂ð Þ ¼ 2mxmx̂ þ c1ð Þ 2sxx̂ þ c2ð Þ
m2
x þ m2

x̂ þ c1
� �

s2
x þ s2

x̂ þ c2
� � ; (17)

where x and x̂ are the ground truth and predicted clean
images. mx and mx̂ are the average of x and x̂, respectively.
sx and sx̂ are the variance of x and x̂, respectively. c1 and c2
are two numbers to stabilize the division with weak
denominator.

Rain-Related Loss. The rain-related variable prediction loss
makes some outputs of the network predict the rain-related
variable. For example, in [1], the streak and the binary streak
maps are connected to the corresponding losses as follows:

LS s; ŝð Þ ¼ ks� ŝk22;
LR r; r̂ð Þ ¼ �

X
i

log r̂i;1ri;1 þ log 1� r̂i;2
� �

1� ri;2
� �� �

; (18)

where s, ŝ, r and r̂ are the ground truth rain streak, pre-
dicted rain streak, ground truth rain mask, and predicted
rain mask, respectively. i indexes the spatial pixel location.

Multi-Scale Loss. The multi-scale loss [28] constrains the
deraining network at different scales, which is expressed as

LMS x; x̂ð Þ ¼
X
i

kxsi � x̂sik22; (19)

where si indexes the scale, and xsi and x̂si are the down-
sampled versions of x and x̂with the scaling factor si.

Perception-Driven Loss. Applying perceptual and adver-
sarial losses [28] improves the perceptual quality of gener-
ated results. The perceptual loss is formulated as

LP x; x̂ð Þ ¼ kF xð Þ � F x̂ð Þk22; (20)

where F ð�Þ is a pretrained CNN transformation.
Adversarial Loss. The adversarial loss used for deraining

network is represented as

LAdvGen ¼ �logD x̂ð Þ; (21)

where D �ð Þ is a discriminator network that differentiates the
generated x̂ and the ground truth x. A summary of loss
functions used in previous works is given in Table 5.

4.4 Datasets

There are a few benchmarking datasets for image deraining,
as introduced in Table 6. These datasets are useful for net-
work training as well as for evaluation:

� Rain12 [6] includes 12 synthesized rain images with
only one type of rain streaks.

� Rain100L and Rain100H [1] include the synthesized
rain images with only one type and five types of rain
streaks, respectively.

TABLE 5
Summary of Loss Functions Used in Existing Works

Loss Function Methods

MSE (L2) JORDER [1], [33] DetailNet [18], [19], DID-MDN [22], DAF-

Net [16], CGAN [24], DualCNN [23], PReNet [9],

RESCAN [31], Scale-Free [35], Residual guided net [8],

Semi-Supervised [12], Scale-Aware [35]

MAE (L1) PyramidDerain [11], NLEDN [10], SPA-Net [34], UD-

GAN [12]

SSIM PyramidDerain [11], PReNet [9], SPA-Net [34], Residual

guided net [8]

Adversarial AttGAN [28], CGAN [24]

Perceptual AttGAN [28], DID-MDN [22], CGAN [24]

Multi-Scale AttGAN [28]

Variable JORDER [1], [33], Semi-Supervised [12], DID-MDN [22],

DAF-Net [16], AttGAN [28], Scale-Aware [35], SPA-

Net [34], UD-GAN [12]

TABLE 6
Summary of Datasets Used in Previous Works

Dataset Number (#train/#test) Highlight Rain Model Publication

Rain12 12 Only for testing. ACM Li et al. [6]
Rain100L 1,800/100 Synthesized with only one type of rain streaks (light rain case). ACM Yang et al. [1]
Rain100H 1,800/100 Synthesized with five types of rain streaks (heavy rain case). ACM Yang et al. [1]
Rain800 700/100 Clean images are selected from BSD500 and UCID [36]. ACM Zhang et al. [24]
Rain14000 9,100/4,900 1,000 clean image used to synthesize 14,000 rain images. ACM Fu et al. [18]
Rain12000 12,000/4000 The data has three kinds of densities. ACM Zhang et al. [22]
RealDataset 28,500/1,000 The ground truth data is synthesized based on temporal redundancy

and visual properties.
ACM Wang et al. [34]

NYU-Rain 13,500/2,700 Background images and the depth information are selected
from NYU-Depth V2 [37].

HRM Li et al. [13]

Outdoor-Rain 9,000/1,500 The background images are collected from [28], and the depth
information is estimated by [38].

HRM Li et al. [13]

RainCityscapes 9,432/1,188 The rain-free images are selected from the training and validation sets
of Cityscape [39]. Rain patches are selected from [6].

DARM Hu et al. [16]

MPID 1,561/419 The MPID dataset covers a much larger diversity of rain models,
including both synthetic and real-world images, serving
both human and machine visions.

ACM + HRM Li et al. [26]

4070 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 14:33:16 UTC from IEEE Xplore.  Restrictions apply. 



� Rain800 [24]’s training set consists of a total of 700
images, where 500 images are randomly chosen
from the first 800 images in the UCID dataset [36]
and 200 images are randomly chosen from the
BSD500’s training set [40]. The testing set consists of
a total of 100 images, where 50 images are randomly
chosen from the last 500 images in the UCID dataset
and 50 images are randomly chosen from the testing
set of the BSD-500 dataset.

� Rain14000 [18] includes 1,000 clean images from
UCID dataset [36], BSD dataset [40] and Google
image search being used to synthesize rainy images.

� Rain12000 [22] consists of 12,000 images in the train-
ing set, where each image is assigned a label based
on its corresponding rain-density level (i.e., light,
medium and heavy). There are 4,000 images per
rain-density level in the dataset. The synthesized
testing set includes 1,200 images.

� RealDataset [34] includes 29,500 rain/rain-free image
pairs that cover a wide range of natural rain scenes,
where the rain-free images are synthesized based on
temporal redundancy and visual properties.

� NYU-Rain [13] is a new synthetic rain dataset taking
images from NYU-Depth V2 [37] as background and
the provided depth information to generate rain
streak and accumulation layers. The dataset also con-
siders the effect of image blurring presented in the
rain image. It contains 16,200 image samples, where
13,500 images are used as the training set.

� Outdoor-Rain [13]’s background images are collected
from [28], and the depth information used to synthe-
size accumulation is produced by [38]. The dataset
includes 9,000 training images and 1,500 validation
images.

� MPID [26]’s training set includes 2,400 synthetic rain
streak image pairs, 861 synthetic raindrop image
pairs, and 700 synthetic rain and mist image pairs.
The testing set includes 200 synthetic rain streak
image pairs, 149 synthetic raindrop image pairs, and
70 synthetic rain and mist image pairs, as well as 50
real rain streak images, 58 real raindrop images, and
30 real rain and mist images. The testing set also
includes 2,496 and 2,048 real captured images in the
driving and surveillance video conditions with
human annotated object bounding boxes.

� RainCityscapes [16] consists of 262 training images
and 33 testing images from the training and valida-
tion sets of Cityscape [39], which are selected as the
clean background images. Rain patches are selected
from [6]. There are in total 9,432 training images and
1,188 testing images.

5 PERFORMANCE SUMMARY

We select a number of recent deraining algorithms from dif-
ferent categories to be evaluated:

1) Image Decomposition, ID [4],
2) Discriminative Sparse Coding, DSC [5],
3) Gaussian mixture model Layer Prior, LP [6],
4) Joint Convolutional Analysis and Synthesis Sparse

Representation, JCAS [42],

5) Deep Detail Network, DetailNet [19], DDN [18],
6) Directional Global Sparse Model, DGSM [17],
7) Recurrent Squeeze-and-Excitation Context Aggrega-

tion Net, RESCAN [31],
8) Progressive Recurrent Network, PReNet [9],
9) Enhanced JOint Rain DEtection and Removal, JOR-

DER-E [33],
10) Heavy Rain Image Restoration, HeavyRain Restorer

[13],
11) Spatial Attentive Network, SPANet [16],
12) Semi-supervised Image rain Removal, SSIR [25], and
13) Density-aware Image De-raining using Multi-stream

Dense Network, DID-MDN [22].
LP is built based on Gaussian mixture models. ID, DSC,

and JCAS are designed based on sparse coding. JORDER-E,
DetailNet, DDN, DID-MDN, PReNet, SPANet, and RESCAN
are deep-learning based methods. HeavyRainRestorer inte-
grates deep CNN and generative adversarial learning for rain
removal. In our experiments, JORDER-E, DetailNet, PReNet,
and RESCAN are trained on Rain100H. SPANet is trained on
RealDataset. DID-MDN is is trained on Rain800. HeavyRain-
Restorer is trained onNYU-Rain andOutdoor-Rain.

Peak signal-to-noise ratio (PSNR) and SSIM [43] are used
for performance evaluation. A few different metrics are used,
particularly when we do not have ground-truths, which we
call non-reference metrics: Naturalness Image Quality Evalu-
ator (NIQE) [44], Perception-based Image Quality Evaluator
(PIQE) [45], Blind/Referenceless Image Spatial Quality Evalu-
ator (BRISQUE) [46], Integrated Local NIQE (IL-NIQE) [47],
Spatial-Spectral Entropy based Quality (SSEQ) [48], SR Met-
rics [49], Entropy-based No-reference Image Quality Assess-
ment (ENIQA) [50], Blind Image Quality Assessment through
Anisotropy (BIQAA) [51], and Blind Image Quality Assess-
ment (BIQA) [52], BLind Image Integrity Notator using DCT
Statistics (BLIINDS-II) [53]. These metrics measure the visual
quality in differentways including humanperception in light-
ness distortion, texture preservation, spatial domain statistics,
and natural preservation, etc.

5.1 Quantitative Evaluation

We compare the quantitative results of different rain
removal methods in Fig. 10. The numbers are obtained
from [54]. To observe the trend of the performance changes
over the years, we order different methods by year in
Fig. 10. This figure provides some interesting information.
First, most of the deep learning-based methods achieve sig-
nificantly superior performance to model-based methods.
For example, DDN obtains more than 3, 7, and 0.7 dB on
Rain100L, Rain100H, and Rain1400, respectively. Second,
the best performance of different methods gradually con-
verges. The performance gaps between RESCAN, PReNet
and JORDER-E are considerably close.

5.2 Qualitative Evaluation

We also show the visual results of different methods in
Fig. 12. The input images shown in the figure are diversified
and difficult to be handled, including large rain streaks and
dense rain accumulation. The top two panels clearly show
that, JORDER-E (Fig. 10j) and PReNet (Fig. 10k) are better at
handling large rain streaks. JORDER-E (Fig. 10j) and
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HeavyRainRemoval (Fig. 10f) achieve better results in
removing rain accumulation and enhancing the visibility
from the bottom three panels.

We also use qualitative assessment metrics for perfor-
mance comparison of different methods by evaluating the
consistency between the results of deraining methods and
the subjective results by Mean Opinion Score (MOS).1 There
are 20 rain images for the evaluation. These images are proc-
essed by the methods and their results are evaluated by
human annotators. 40 participants are invited in the subjec-
tive experiment. Each of them is required to provide subjec-
tive results for 550 image pairs.

The comparison results are visualized in Fig. 11. Based
on the compared pairs, we further fit a Bradley-Terry [55]
model to estimate the MOS score for each method so that
they can be ranked. We can infer the MOS score for each
input sample, and then combine the results of different sam-
ples via geometric mean, which is denoted as the average
MOS in Table 7. We can also directly infer the MOS score
with the accumulated ranking results of all samples, which
is denoted asMOS value in Table 7.

In general, the paper published in 2019 are on average
superior to previous methods on the dataset. However, the
superiority of the qualitative comparison is not the same as
that of the quantitative one, which reflects the disagree-
ments between optimizing the quantitative metrics on the
synthesized data and achieving better visual quality on real
images. This is due to the domain gap between the real rain
images and synthesized data.

We also observe that, all non-reference metrics are not in
agreement with MOS and the qualitative values. We calcu-
late Spearman rankorder correlation coefficient (SROCC),
Kendallrank-order correlation coefficient (KROCC), and
Pearson linear correlation coefficient (PLCC) in Table 8,
where large absolute values denote that the metric can
obtain more consistent results with respect to human per-
ception. One can see that the values for the best result are
only 0.2216, 0.1473, 0.1864 for SROCC, KROCC, and PLCC,
respectively.

We conclude that all the existing metrics are not suitable
to measure the performance of deraining, and thus there is

Fig. 11. Visualization of all paired comparisons. The horizontal axis
denotes the comparison group ID while the vertical axis denotes the win-
ning time in the comparison.

Fig. 10. The objective results of different methods. Top panel: PSNR. Bottom panel: SSIM. All methods are sorted by year. A red curve connects the
top performance from 2015 to 2019. It is shown that, the objective performance gains converge gradually.

1. More information about the subjective evaluation dataset, results
and the evaluation website can be found at: https://flyywh.github.io/
Single_rain_removal_survey/.
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great potential for future works on the deraining perfor-
mance evaluation.

5.3 Computational Complexity

Table 9 compares the runtime of different state-of-the-art
methods. All sparse coding based methods are imple-
mented in MATLAB and tested on a CPU, following the
original setting of all the released codes, while other

methods are accelerated by a GPU. ID-CGAN is imple-
mented in Torch7. The rest is implemented in Pytorch. One
can observe that JORDER-E, HeavyRainRemoval, and
URML employ many more parameters than other methods.
The comparison results on both performance and parameter
number show that PReNet is an impressive method quanti-
tatively and qualitatively, while keeping a light-weighted
framework.

Fig. 12. Visual results of different methods. 1st and 2nd panels: rain images with large rain streaks. 3th and 4th panels: rain images including rain
accumulation. 5th panel: rain images including both large rain streaks and accumulation.
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6 FUTURE DIRECTIONS

6.1 Integration of Physics Model and Real Images

Many existing learning-based methods rely on synthetic
rain images to train the networks, since to obtain paired
rain images and their exact clean ground-truths is intracta-
ble. While such a training scheme shows some degree of
success, to improve the performance, we need to incorpo-
rate both real rain images the training process; otherwise,
the network will never been exposed to the real rain images,
impeding the network’s effectiveness in the testing stage.
Incorporating real rain images, however, can pose prob-
lems, because to obtain the paired clean background images
is intractable. Consequently, there is no loss for a network
to learn. To address this problem, we may rely on physics-
based constraints. An attempt in [13] has shown the feasibil-
ity of this direction. Specifically, it combines the power of a
physics model and a generative adversarial network, which
can accept unpaired ground-truths. In the future, more
works are expected in this direction to make efforts to com-
bine of physical models and real rain images.

6.2 Rain Modeling

The current synthetic rain models can only cover limited
types of rain streaks, e.g., a range of scales, shapes, direc-
tions, etc. However, in practice, the appearance of rain
streaks is diverse, due to many different factors that can

influence rain conditions, e.g., 3D environments, distances,
wind directions/speed, etc. Currently, when the distribu-
tions of captured rain streaks are different from the syn-
thetic images in the training, the methods tend to fail to
remove rain properly. The studies of [12], [25] attempt to
model the rain appearance via the generation model and
unpaired learning. However, observing their generated rain
images, one can visibly see that they are not as diverse as
real rain can be, and they are visibly not real enough. The
latter can also cause problems, since it means there are sig-
nificant gaps between synthetic and real rain images.

6.3 Evaluation Methodology

With a rapid growth of works on rain removal, it is still chal-
lenging to measure whether a method is sufficiently effec-
tive. As shown in Section 5.2, existing quality assessment
methods are still far from capturing real visual perception of
human. Thus, there is a potential direction which the com-
munity can pay more attention to. The quality assessment of
rain removal methods can be considered from two aspects.
First, for human vision, the metric should be designed to
model the typical distortions caused by rain and deraining
methods, and to describe the human preferences to different
deraining results. Wuet al. [66] make the first attempt in that
direction. However, the attempt is preliminary and there is
plenty of room for further exploration. Second, for machine
vision, we could consider the performance of high-level
vision tasks in rain conditions. The MPID dataset makes the
preliminary attempt by constructing task-driven evaluation
sets for traffic detection. In the future, we hope that more
large-scale task-driven evaluation sets with more applica-
tions inmore diverse rain conditions.

6.4 More Related Tasks and Real Applications

When existing deraining methods are applied to real appli-
cations, there are a few factors that should be considered.
First, the runtime of the method. Current methods are far
from the requirement of real-time processing (30 fps). How
to accelerate existing methods is a future challenge. Second,
real rain images usually contain more complicated visual
degradation. For example, the surveillance videos are com-
pressed and also include compression distortion, e.g.,

TABLE 8
The Evaluation Results of All Quality Assessment Models

Methods SROCC KROCC PLCC

NIQE 0.0780 0.0461 0.0700
PIQE 0.2118 0.1437 0.1215
BRISQUE 0.1896 0.1297 0.1508
ILNIQE 0.0778 0.0508 0.1458
SSEQ 0.2216 0.1473 0.1257
SR-Metric 0.1132 0.0760 0.1129
ENIQA 0.1333 0.0932 0.1487
BIQAA 0.1365 0.0927 0.1383
BIQI 0.2001 0.1299 0.1558
BLIINDS2 0.1705 0.1208 0.1752
FRISQUE 0.2083 0.1407 0.1864

TABLE 7
The Non-Reference Metric Results of Different Methods

Methods Input ID DSC LP DetailNet Heavy DID-MDN RESCAN JCAS JORDER-E PReNet SPANet " or #
NIQE 5.38 4.46 4.55 5.46 5.34 4.97 5.07 3.78 4.97 3.93 4.78 3.92 #
PIQE 38.36 39.41 40.04 64.86 36.50 52.81 38.97 24.28 35.64 29.77 45.72 30.40 #
BRISQUE 34.00 31.44 32.51 41.01 32.99 37.32 30.12 25.70 32.91 26.51 30.28 28.38 #
ILNIQE 31.09 31.20 29.16 41.78 30.72 31.84 26.32 30.63 26.53 28.46 29.70 30.58 #
SSEQ 24.91 28.66 29.02 44.84 22.83 32.76 26.41 21.94 17.94 23.27 26.48 25.15 #
SR-Metric 7.90 7.73 7.46 4.76 8.12 7.26 8.06 7.90 8.29 7.82 7.66 7.85 "
ENIQA 0.1508 0.2012 0.1886 0.2631 0.1323 0.2091 0.1331 0.1347 0.1166 0.1394 0.1499 0.1445 #
BIQAA 0.0107 0.0036 0.0051 0.0031 0.0123 0.0069 0.0085 0.0041 0.0165 0.0040 0.0043 0.0078 #
BIQI 42.84 11.75 34.12 18.58 40.05 -5.15 37.05 35.40 29.81 34.46 31.02 24.34 "
BLIINDS-II 22.55 19.80 22.00 22.85 21.78 25.33 20.60 12.58 20.13 12.53 24.03 16.08 #
FRISQUE 54.99 54.32 52.95 38.40 58.97 52.75 25.29 57.56 66.70 58.49 58.95 58.54 "
Average MOS - 0.1042 0.2232 0.2440 1.8377 1.0974 0.4004 1.2413 0.3527 3.1366 2.3252 1.0 "
MOS - 0.1466 0.2804 0.3050 1.8897 1.2510 0.4825 1.3037 0.4233 3.1988 2.3802 1.0 "
Heavy denotes HeavyRainRemoval. Red, blue, and green denote the best, second best, and third best results.
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blocking artifacts. Effective deraining methods also need to
take care of these issues. Third, there are scenarios where
composite degradation might be involved, e.g. night-time
rain conditions, mixture of raindrop and rain streak, etc. It
will be interesting to detect the degradation types and han-
dle them in a unified framework adaptively.

7 CONCLUSION

We have surveyed single-image deraining methods based
on model-based and data-driven approaches. We discussed
the rain models, the challenges of single-image deraining,
and the basic ideas of the model-based and data-driven
methods. In our discussion, the model-based methods are
categorized further into: layer decomposition, sparse coding
and GMMs; and, data driven based methods are grouped
into: deep CNN, generative adversarial network, and semi/
unsupervised learning methods. We also learned that data-
driven methods generally perform better than the model-
based methods. However, there are still a few open prob-
lems, particularly in the data-driven approach. Problems
such as fusing physics models and real-rain images, more
accurate rain models, evaluation methodology, and real
applications of deraining still need further developments.
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